太康锅炉厂

134600260060394-8718878

您的位置: 太康锅炉厂 > 解决方案 >

锅炉低氮排放的标准

发布日期:2019-08-28
信息摘要:
随着国家能源结构转型和产业升级,政府大力推广天然气等清洁能源的使用。与此同时,对于大气污染排放也越来越重视,其中对于氮氧化物允许排放浓度的标准更是日趋严格。

  天然气锅炉作为一种清洁能源,相比于煤,燃烧产物几乎不含粉尘及SO2,其主要的污染物为氮氧化物(NOX),NOX除了危害人体健康外,在大气中通过一系列的物理化学反应,经过日照,与碳氢化合物、臭氧等生成光化学烟雾。不仅如此,NOX同时也是形成酸雨的重要成因,更是产生大气超细颗粒物(PM2.5)的重要元凶。

  随着国家能源结构转型和产业升级,政府大力推广天然气等清洁能源的使用。与此同时,对于大气污染排放也越来越重视,其中对于氮氧化物允许排放浓度的标准更是日趋严格,严格的锅炉大气污染物排放标准也促进厂家对于低氮燃烧技术的研发改进工作。国家对低氮锅炉的排放标准已经发布了清晰的标准,本文主要介绍国内外燃气锅炉氮氧化物的排放标准以及常见的低氮燃烧技术。

  我国锅炉氮氧化物的排放标准

  我国的锅炉大气污染物排放标准基本经历了控制烟尘、控制SO2,控制NOX三个阶段。目前国家层面的现行标准为GB13271-2014《锅炉大气污染物排放标准》,GB13271-2014为该标准的第三次修订稿。第一次修订版本是1992年发布的GB13271-91《锅炉大气污染物排放标准》,1992年的修订版分年限规定了燃煤锅炉最高允许的排放烟尘浓度、SO2排放浓度及烟气黑度。1999年和2001年进行了第二次修订,标准号分别为GWPB3-1999和GB13271-2001。第二次修订稿重新规定了锅炉(包括燃气锅炉)的烟尘、烟气黑度、SO2排放要求,并首次对氮氧化物的最高允许浓度进行要求。现行的2014年修订稿中对于氮氧化物排放浓度的规定如表1~3:

  从2015年开始,在国家标准基础上,各地开始逐步制定更为严格的地方大气污染物排放标准。比如北京地区,出台了DB11/139-2015《北京市锅炉大气污染物排放标准》,要求自2017年4月1日起,在用及新建锅炉氮氧化物排放浓度限值分别为80mg/m3及30 mg/m3。

  20多年来,北京市燃气锅炉大气污染物排放标准及发展历程见表6,最新的标准堪称世界上最严格的标准之一,北京的标准是否还会越来越严格?我们拭目以待。

  表6 北京市新建燃气锅炉大气污染物排放标准变化历程

  天津市2016年7月发布新标准DB12/151-2016《天津市锅炉大气污染物排放标准》,重新限定了燃气锅炉氮氧化物排放限值,新建燃油、燃气锅炉氮氧化物排放控制水平要求达到80mg/m3,具体氮氧化物的排放浓度要求见表7~8:

  上海从2017年开始调研及收集征求意见,2018年新标准DB31/387—2018《上海市锅炉大气污染物排放标准》发布稿正式公布并于6月7日起正式实施。上海的地标规定自标准实施之日(2018年6月7日)起对新建的锅炉(65t/h以下)氮氧化物排放浓度限值为50mg/m3,客观地说,上海地方标准吸取了北京的经验,相对比较务实。对大吨位的锅炉更有相关明确规定,额定热功率大于等于14MW或额定蒸发量大于等于20t/h的锅炉应按《污染源自动监控管理办法》的规定安装烟气排放连续监测系统,与环保部门联网,并保证设备正常运行。从这里看出来在线烟气连续监测系统和显示将来会是趋势,就如同能耗计量上传一样。上海市的具体的排放要求见

  以上城市的地方标准的颁布势必会引领其他省份纷纷效仿,实际上很多省份已经发布相关标准或进行意见稿的收集征求工作。 显然,严控NOx已经成为各地方标准的既定事实。

  实际调研查看的锅炉排放情况

  2015年初全国燃气工业锅炉检测统计结果显示,氮氧化物排放浓度≤200mg/m3的燃气锅炉仅有35%。

  2016年北京环境科学院对市内燃气工业锅炉检测结果中,氮氧化物的排放浓度平均值为133mg/m3,而超过150mg/m3的占比43%。

  2017年和2018年是北京市燃气锅炉低氮改造的集中年份,改造之后的最终统计结果现在还没有相关数据,但是预计和目前北京的地方标准的规定还有一定差距。从全国数据来看,氮氧化物的减排工作还任重道远。因此,寻求合理的低氮燃烧技术、控制技术成为亟待研究和解决的课题。从设计到顾问,从厂家到甲方都需要引起足够的重视,特别是锅炉及燃烧装置厂家自身产品及燃烧技术上必须进行改进以适应目前各地的排放标准。

  氮氧化物(NOx)的产生机理及类型

  燃气燃烧过程中产生的NOx的主要有燃料型、热力型和快速型。

  01热力型NOx

  由空气中的N2在高温下氧化产生,反应温度越高,NOX的生成速度越快。影响因素如下:

  a)火焰温度,当温度低于1300℃,产生的NOX很少,温度超过1500℃时,NOX将会成倍增加。

  b)氧气浓度:氧气浓度越高,NOX产生量越大。

  c)燃烧时间:在高温区停留时间越长,NOX生成量越多。

  02快速型NOx

  燃烧过程中碳氢化合物高温分解产生CH自由基和空气中的N2分子反应生成HCN和N,再进一步氧化,反应的时间只需要60ms。快速型NOX的生产量占比非常少,通常不足5%。

  03燃料型NOx

  指的是燃料中的含氮化合物在燃烧过程中产生的,含氮化合物中的氮通常以原子状态存在,其结合键能量小,在燃烧过程中很容易分解出来氧化成NOX,由于天然气中基本不含有固定氮,所以燃料型NOX基本可以忽略。

  综上,我们在进行低氮燃烧技术改进时,主要控制的是热力型NOX,根据其产生机理,控制的方向是降低火焰温度,尤其是降低火焰峰值温度,缩小火焰高温区的范围,缩短烟气在高温区停留时间,降低氧气的浓度等。

  按照控制NOX排放的主要措施按控制的环节不同可以分为两类:第一类是控制NOX的产生,通过降低燃烧高温区的温度,缩小高温区的分布范围,具体的措施有:燃料/空气分级燃烧技术,烟气再循环技术(内循环、外循环),全预混表面燃烧技术,水冷燃烧技术,低过量空气系数等方法。第二类是烟气脱硝技术,就是说对烟气中已经产生的NOX进行处理,主要的相关技术有:贵金属催化脱硝法,选择性催化还原法(SCR),选择性非催化还原法(SNCR)、碱液吸收法等。

  在燃气锅炉行业目前应用较多、有效且简单的控制氮氧化物的方式主要为燃烧控制法,即第一类。主要是通过优化炉内燃烧工况,合理优化燃料与空气混合,控制火焰分布,降低炉膛内温度来实现降低制氮氧化物。常见的有以下几种方法:

  ●空气分级燃烧

  将燃烧所需要的空气分阶段与燃料混合燃烧,降低燃烧强度和火焰温度。二次供风出口速度很高,卷席周围烟气,使得烟气在炉内再循环。分级配风一方面降低了中心火焰的温度,另外一方面稀释了火焰表面的氧浓度,从而抑制了NOX的生成。

  ●燃料分级燃烧

  燃料分级燃烧是指将燃气从不同的区域送入炉膛,使得燃料分阶段、分区域进行燃烧。充分利用燃烧室的空间,将燃料分散布置,降低火焰集中度,降低高温区的温度。

  ●分级燃烧

  一般低氮燃烧器将空气分级和燃料分级相结合,统称分级燃烧技术。分级燃烧技术原理实质是通过贫氧和过氧相结合,使火焰分散,降低火焰温度,促使炉内烟气局部循环,形成还原气氛,部分还原已经产生的NO为N2,从而在总量上控制NOx的排放浓度。

  分级燃烧技术虽然可以一定程度降低氮氧化物的产生,但是很多燃烧器在实际使用中没有完全实现助燃空气和燃气的充分混合,炉膛内存在局部高温区,其温度高于产生热力型NOx的温度,造成NOx浓度超标。另一方面,有可能出现燃料和空气的混合流动不佳,造成一氧化碳超标,局部积碳等不完全燃烧的现象。为了降低反应温度,需要尽可能使火焰分散,扩大火焰形状,也就是说需要结合炉膛配合使用,而大多是情况是炉膛体积有限,为了避免火焰相对炉膛过大,通常会降低燃烧器的输出功率,这样可以降低NOx浓度及保证充分燃烧,但是缺点是锅炉的功率下降了,而且有烟气冷凝的风险。

  据相关文献及实际运行数据显示,分级燃烧一般可将NOx排放浓度控制在60~80 mg/m3,可满足国家标准,但是对于目前的很多地方标准,这种技术已经不能满足。

  实际工程应用中,分级燃烧会和烟气再循环技术(FGR)结合起来应用,以满足30mg/m3的排放要求。

  ●烟气再循环技术(FGR)

  烟气再循环技术指的是将燃烧后的部分烟气(主要为水蒸气、二氧化碳和氮气)引出返回至燃烧器,与新鲜的空气混合参与燃烧。再循环烟气的温度与炉膛内的火焰温度比要低得多,能够显著降低炉膛内的温度,减少炉膛容积热强度。同时,由于引入的烟气含氧量极低,在炉膛内可以有效降低炉膛内的氧气浓度,有效抑制了NOx的形成。

  烟气再循环原理:将部分低温烟气直接送入炉内,或与空气(一次风或二次风)混合送入炉内,因烟气吸热和稀释了氧浓度,使燃烧速度和炉内温度降低,因而热力NOX减少。对于燃气锅炉,NOX降低最显著。通常,生成途径有热力型(T-NO)、快速型(P-NO)和燃料型(F-NO)3种类型。烟气再循环系统和燃气燃烧器连接,循环烟气中的惰性气体进入燃烧器,一方面使火焰传播速度降低,另一方面吸收热量使炉内温度水平有所降低,则绝对火焰温度降低,达不到生成温度,因此抑制了T-NO的生成。循环烟气中的其他成分大量为N2、CO2、H2O,由于混入了循环烟气,空气与烟气混合物中氧浓度降低,从而影响了的生成量。在空气中混入循环烟气,即增加了反应中N2的含量。由于氧原子和氮分子反应所需的活化能比原子氧和燃料中可燃成分反应所需活化能大,则大量的氮气没有与氧反应直接生成NO,而与燃料中烃类成分反应。大量的N2则增大了上式的正反应,生成大量的中间产物HCN。而烟气中的氧原子进而与这些中间产物首先发生反应,HCN在贫氧环境下与O2总反应如下:HCN+5/4 O2→1/2 N2+ CO2+1/2H2O

  由式(2-5)可见,在贫氧浓燃烧条件下,HCN最终生成N2。因此采用烟气再循环后以方面中间产物HCN增多,而另一方面O2浓度比不使用烟气再循环前减少,促使反应完全进行,N2生成量大幅度增多,从而减少了P-NO生成。

  

  燃烧器的火焰被冷却水管包围,通过冷却水管的冷却水带走热量,降低火焰温度,从而破坏氮氧化物生成条件。通常搭配预混燃烧技术一起使用,预混燃烧可有效缩小火焰长度,较短的火焰可充分被冷却水管进行降温。

  本技术可有效降低NOx排放浓度,但是适用性不广。由于采用水冷却,所以对于大多数改造项目,由于炉体结构无法改造,所以本技术无法应用。水冷燃烧基本只能适用于置换案例或全新设计炉体的工程案例。另外,这种炉体一般搭配专用燃烧器,而不是通用燃烧器,一旦燃烧器出现故障,用户可选择的燃烧器就非常局限。

  总体来讲,每种低氮燃烧技术都有其适用条件和不同的效果。对于具体的项目,需要根据炉体的结构、尺寸、功率等条件来考虑采用哪种措施。例如,如果炉膛直径及燃烧器喉口较大,可采用燃料分级和烟气内循环。如果炉膛细长,则不宜采用燃料分级,可采用空气分级。烟气外循环具有普适性,但是控制要求高,更适合大中型的锅炉使用。全预混表面燃烧技术,各方面优势都很突出,但是目前适用于小型燃气锅炉。另外,多种技术的耦合利用也是一种低氮燃烧改造的趋势。

【相关推荐】
上一篇:发电行业
下一篇:煤锅炉改造成生物质锅炉的方案

关键词: 锅炉低氮排放的标准

推荐资讯
生物质锅炉与燃煤锅炉有没有区别

生物质锅炉与燃煤锅炉有没有区别

生物质锅炉与燃煤锅炉区别在哪...
2017-11-01
买天然气锅炉,如何选择锅炉厂家

买天然气锅炉,如何选择锅炉厂家

南省太锅锅炉制造有限公司(原河南太康锅炉厂)是国内生产燃气锅炉最大锅炉制造商之一。该公司位于河南省太康工业园区,是国家定点的省一级锅炉、压力容器制造企业....
2017-11-01
发往新疆喀什的10台电加热锅炉

发往新疆喀什的10台电加热锅炉

新疆喀什客户一次性和河南太锅锅炉公司签署400台350千瓦的电加热锅炉合同,提供给当地企业供暖使用...
2017-11-01

咨询热线

13460026006